论文标题
膜的非亚伯u二元性
Non-Abelian U-duality for membrane
论文作者
论文摘要
当目标空间具有由drinfel double给出的广义等轴测组时,字符串理论的T偶对二维可以扩展到Poisson-lie t偶。在M理论中,T偶偶性被理解为U二维的子组,但是U-二元性的非亚洲延伸仍然是一个谜。在本文中,我们研究了弯曲背景的膜理论,该膜理论由$ \ Mathcal {e} _n $代数给出了广义等轴测组。这提供了研究非亚洲U二元性的自然设置,因为$ \ Mathcal {e} _n $代数已被提议作为Drinfel的U二元性扩展。我们表明,亚伯u二元性的标准处理可以扩展到非亚伯式设置。但是,在非阿贝尔扩展中,阿贝尔U二元性中的一个著名问题仍然存在。
T-duality of string theory can be extended to the Poisson-Lie T-duality when the target space has a generalized isometry group given by a Drinfel'd double. In M-theory, T-duality is understood as a subgroup of U-duality, but the non-Abelian extension of U-duality is still a mystery. In this paper, we study membrane theory on a curved background with a generalized isometry group given by the $\mathcal{E}_n$ algebra. This provides a natural setup to study non-Abelian U-duality because the $\mathcal{E}_n$ algebra has been proposed as a U-duality extension of the Drinfel'd double. We show that the standard treatment of Abelian U-duality can be extended to the non-Abelian setup. However, a famous issue in Abelian U-duality still exists in the non-Abelian extension.