论文标题

分化下多项式根的密度的保护法

Conservation Laws for the Density of Roots of Polynomials under Differentiation

论文作者

Steinerberger, Stefan

论文摘要

令$ p_n(x)$为$ n $具有$ n $ dintist的$ n $的多项式,根据$ \ mathbb {r} $上的nice概率分布$ u(0,x)dx $分发的真实根。一个自然的问题是了解$(t \ cdot n)的根源的密度$ u(t,x)$,$ p_n $的$ th衍生品$ 0 <t <1 $ as $ n \ rightarrow \ rightarrow \ infty $。我们得出了$ u(t,x)$的演变的对话定律的\ textit {infinite}。前三个是\ begin {align*} \ int _ {\ MathBb {r}} {u(t,x)〜dx} = 1-t,\ qquad \ qquad \ qquad \ qquad \ int _ {\ m athbb {r}} {u(t,t,t,t,x〜dx} x〜dx} x〜dx} = \ left(1-t \ right(1-t \ right) x〜dx},\ qquad \ int _ {\ Mathbb {r}} \ int _ {\ Mathbb {r}} u(t,x)(x-y)^2 u(t,y) u(0,y)〜dx dy。 \ end {align*}作者建议$ u(t,x)$可能会根据涉及希尔伯特变换的非本地进化方程而发展;这已通过两种特殊的封闭形式解决方案进行了验证 - 这些保护定律因此指出了希尔伯特转型的有趣身份。我们讨论许多开放问题。

Let $p_n(x)$ be a polynomial of degree $n$ having $n$ distinct, real roots distributed according to a nice probability distribution $u(0,x)dx$ on $\mathbb{R}$. One natural problem is to understand the density $u(t,x)$ of the roots of the $(t\cdot n)-$th derivative of $p_n$ where $0 < t < 1$ as $n \rightarrow \infty$. We derive an \textit{infinite} number of conversation laws for the evolution of $u(t,x)$. The first three are \begin{align*} \int_{\mathbb{R}}{ u(t,x) ~ dx} = 1-t, \qquad \qquad \int_{\mathbb{R}}{ u(t,x) x ~ dx} = \left(1-t\right)\int_{\mathbb{R}}{ u(0,x) x~ dx}, \qquad \int_{\mathbb{R}} \int_{\mathbb{R}} u(t,x) (x-y)^2 u(t,y) ~ dx dy = (1-t)^3 \int_{\mathbb{R}} \int_{\mathbb{R}} u(0,x) (x-y)^2 u(0,y) ~ dx dy. \end{align*} The author suggested that $u(t,x)$ might evolve according to a nonlocal evolution equation involving the Hilbert transform; this has been verified for two special closed form solutions -- these conservation laws thus point to interesting identities for the Hilbert transform. We discuss many open problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源