论文标题
使用数值半径不等式的多项式的零估计
Estimations of zeros of a polynomial using numerical radius inequalities
论文作者
论文摘要
我们为有限线性运算符的数值半径和$ 2 \ times 2 $运算符矩阵提供了新的界限。我们将数值半径上的上限应用于复杂的一元多项式的Frobenius伴随矩阵,以获得该多项式零的新估计。我们还用数值示例表明,我们的新估计改善了现有估计。
We present new bounds for the numerical radius of bounded linear operators and $2\times 2$ operator matrices. We apply upper bounds for the numerical radius to the Frobenius companion matrix of a complex monic polynomial to obtain new estimations for zeros of that polynomial. We also show with numerical examples that our new estimations improve on the existing estimations.