论文标题
结构信息学习机械:从观察,关联,优化,解码和抽象中学习
Structural Information Learning Machinery: Learning from Observing, Associating, Optimizing, Decoding, and Abstracting
论文作者
论文摘要
在本文中,我们提出了{\ it结构信息学习机}的模型(简称Silem),从而通过合并计算和信息理论来导致学习的数学定义。 Our model shows that the essence of learning is {\it to gain information}, that to gain information is {\it to eliminate uncertainty} embedded in a data space, and that to eliminate uncertainty of a data space can be reduced to an optimization problem, that is, an {\it information optimization problem}, which can be realized by a general {\it encoding tree method}.结构信息学习机的原理和标准是从与数据点之间的关系以及语法{\ it解释}的语法{\ it ICS NISTESTR结构}的语义{\ IT解释}一起观察到的数据点的最大化。 Silem机器学习自然法律或规则。 It observes the data points of real world, builds the {\it connections} among the observed data and constructs a {\it data space}, for which the principle is to choose the way of connections of data points so that the {\it decoding information} of the data space is maximized, finds the {\it encoding tree} of the data space that minimizes the dynamical uncertainty of the data space, in which the encoding tree is hence referred to as a {\it decoder}, due to the fact that it has already eliminated the maximum amount of uncertainty embedded in the data space, interprets the {\it semantics} of the decoder, an encoding tree, to form a {\it knowledge tree}, extracts the {\it remarkable common features} for both semantical and syntactical features of the modules由解码器解码以构造{\ it抽象树},在观察到新数据时,在学习中提供了{\ it直觉推理}的基础。
In the present paper, we propose the model of {\it structural information learning machines} (SiLeM for short), leading to a mathematical definition of learning by merging the theories of computation and information. Our model shows that the essence of learning is {\it to gain information}, that to gain information is {\it to eliminate uncertainty} embedded in a data space, and that to eliminate uncertainty of a data space can be reduced to an optimization problem, that is, an {\it information optimization problem}, which can be realized by a general {\it encoding tree method}. The principle and criterion of the structural information learning machines are maximization of {\it decoding information} from the data points observed together with the relationships among the data points, and semantical {\it interpretation} of syntactical {\it essential structure}, respectively. A SiLeM machine learns the laws or rules of nature. It observes the data points of real world, builds the {\it connections} among the observed data and constructs a {\it data space}, for which the principle is to choose the way of connections of data points so that the {\it decoding information} of the data space is maximized, finds the {\it encoding tree} of the data space that minimizes the dynamical uncertainty of the data space, in which the encoding tree is hence referred to as a {\it decoder}, due to the fact that it has already eliminated the maximum amount of uncertainty embedded in the data space, interprets the {\it semantics} of the decoder, an encoding tree, to form a {\it knowledge tree}, extracts the {\it remarkable common features} for both semantical and syntactical features of the modules decoded by a decoder to construct {\it trees of abstractions}, providing the foundations for {\it intuitive reasoning} in the learning when new data are observed.