论文标题

在签名图中搜索极化:局部光谱方法

Searching for polarization in signed graphs: a local spectral approach

论文作者

Xiao, Han, Ordozgoiti, Bruno, Gionis, Aristides

论文摘要

签名的图已用于模拟社会网络中的相互作用,这可以是积极的(友好)或负面的(对立)。该模型已用于研究社交网络中的两极分化和其他相关现象,这可能对我们社会中的民主审议过程有害。在此应用程序域中,有趣且具有挑战性的任务是检测签名图中的两极分化社区。为此任务提出了许多不同的方法。但是,现有的方法旨在找到全球最佳解决方案。取而代之的是,在本文中,我们有兴趣找到与提供的一小部分种子节点相关的两极化社区。种子节点可以由两组组成,这构成了极化结构的两个侧面。 在本文中,我们制定了在签名图中找到本地偏振社区作为本地偏见的特征问题的问题。通过将与Laplacian矩阵的最小特征值相关的特征向量作为约束优化问题的解决方案,我们可以将本地信息纳入作为附加约束。此外,我们表明,局部偏向的向量可用于在签名图上的cheeger常数局部类似物中找到具有近似保证的社区。通过利用输入图中的稀疏性,可以在线性直接到图形大小的时间内找到偏光群落的指标向量。 我们在现实世界网络上的实验验证了所提出的算法,并以这种半监督的方式证明了其在寻找局部结构方面的有用性。

Signed graphs have been used to model interactions in social net-works, which can be either positive (friendly) or negative (antagonistic). The model has been used to study polarization and other related phenomena in social networks, which can be harmful to the process of democratic deliberation in our society. An interesting and challenging task in this application domain is to detect polarized communities in signed graphs. A number of different methods have been proposed for this task. However, existing approaches aim at finding globally optimal solutions. Instead, in this paper we are interested in finding polarized communities that are related to a small set of seed nodes provided as input. Seed nodes may consist of two sets, which constitute the two sides of a polarized structure. In this paper we formulate the problem of finding local polarized communities in signed graphs as a locally-biased eigen-problem. By viewing the eigenvector associated with the smallest eigenvalue of the Laplacian matrix as the solution of a constrained optimization problem, we are able to incorporate the local information as an additional constraint. In addition, we show that the locally-biased vector can be used to find communities with approximation guarantee with respect to a local analogue of the Cheeger constant on signed graphs. By exploiting the sparsity in the input graph, an indicator vector for the polarized communities can be found in time linear to the graph size. Our experiments on real-world networks validate the proposed algorithm and demonstrate its usefulness in finding local structures in this semi-supervised manner.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源