论文标题
Bi $ _2 $ te $ _3 $ nanoribbons的拓扑表面状态的量子运输
Quantum transport in topological surface states of Bi$_2$Te$_3$ nanoribbons
论文作者
论文摘要
拓扑绝缘子的准1D纳米线是超导体混合体系结构中的新兴候选结构,用于实现基于Majorana Fermion的量子计算方案。然而,在技术上很难制造和识别拓扑绝缘子纳米线的1D极限。在这里,我们研究了有选择性生长的BI $ _2 $ _3 $ _3 $拓扑绝缘子纳米式和纳米厅酒吧,处于低温温度,以供其拓扑特性。大厅杆以深蚀刻的Si $ _3 $ _4 $ _4 $/SIO $ _2 $ nano-trenches(111)底物的纳米 - 底物定义,然后通过分子束外观上的选择性区域增长过程。选择性区域的增长对设备质量有益,因为不需要进行随后的制造即可塑造纳米管。进行传输线测量以评估应用TI/AU触点的接触电阻以及BI $ _2 $ TE $ _3 $二元拓扑绝缘器的特定电阻。在这些无意中的$ n $ doped bi $ _2 $ _3 $ _3 $拓扑绝缘子纳米厅棒的扩散运输方案中,我们通过分析依赖角度依赖的通用通用电导波动光谱来确定可区分的电子轨迹。当样品从垂直于平行磁场方向倾斜时,这些高频繁的通用电导波动与低常见的Aharonov-BOHM型振荡合并,该振荡源自拓扑保护的表面状态,这些表面围绕着纳米替临截面。对于500 nm宽的大厅杆,我们还确定了垂直场的低频率shubnikov-de haas振荡,该方向揭示了拓扑高型2D传输通道,部分与大部分材料解耦。
Quasi-1D nanowires of topological insulators are emerging candidate structures in superconductor hybrid architectures for the realization of Majorana fermion based quantum computation schemes. It is however technically difficult to both fabricate as well as identify the 1D limit of topological insulator nanowires. Here, we investigated selectively-grown Bi$_2$Te$_3$ topological insulator nanoribbons and nano Hall bars at cryogenic temperatures for their topological properties. The Hall bars are defined in deep-etched Si$_3$N$_4$/SiO$_2$ nano-trenches on a silicon (111) substrate followed by a selective area growth process via molecular beam epitaxy. The selective area growth is beneficial to the device quality, as no subsequent fabrication needs to be performed to shape the nanoribbons. Transmission line measurements are performed to evaluate contact resistances of Ti/Au contacts applied as well as the specific resistance of the Bi$_2$Te$_3$ binary topological insulator. In the diffusive transport regime of these unintentionally $n$-doped Bi$_2$Te$_3$ topological insulator nano Hall bars, we identify distinguishable electron trajectories by analyzing angle-dependent universal conductance fluctuation spectra. When the sample is tilted from a perpendicular to a parallel magnetic field orientation, these high frequent universal conductance fluctuations merge with low frequent Aharonov-Bohm type oscillations originating from the topologically protected surface states encircling the nanoribbon cross section. For 500 nm wide Hall bars we also identify low frequent Shubnikov-de Haas oscillations in the perpendicular field orientation, that reveal a topological high-mobility 2D transport channel, partially decoupled from the bulk of the material.