论文标题

多模式波能转换器的设计优化

Design optimisation of a multi-mode wave energy converter

论文作者

Sergiienko, Nataliia Y., Neshat, Mehdi, da Silva, Leandro S. P., Alexander, Bradley, Wagner, Markus

论文摘要

与卡内基清洁能源开发的CETO系统相似的波动能量转换器(WEC)被认为是用于设计优化的。该WEC能​​够从重大,潮流和俯仰运动模式中吸收功率,从而使优化问题不平凡。使用频谱域模型模拟WEC动力学,考虑了流体动力,粘性阻力和功率起飞力。用于优化的设计参数包括浮标半径,浮标高度,绑带倾斜角度和控制变量(阻尼和刚度)。考虑到单向不规则波,在西澳大利亚州奥尔巴尼测试地点的波浪气候优化了WEC设计。考虑了两个目标函数:(i)给定的海上场地的年平均功率输出最大化,以及(ii)最小化水平的能源成本(LCOE)。 LCOE计算近似为产生的能量与包括浮标和锚固系统质量的系统的显着质量的比率。采用六种不同的启发式优化方法,以评估和比较最著名的进化算法的性能,群智能技术和数值优化方法。结果表明,如果我们有兴趣最大化能源生产而不考虑制造此类系统的成本,则应尽可能大(20 m半径和30 m高)建造浮标。但是,如果我们想要产生廉价能量的系统,那么浮标的半径应大约为11-14 〜m,而高度应尽可能低。这些结果与Carnegie Clean Energy为其CETO 6多赛车单元选择的整体设计一致。但是,应该指出的是,这项研究并未得到他们的告知,因此可以将其视为对设计选择的独立验证。

A wave energy converter (WEC) similar to the CETO system developed by Carnegie Clean Energy is considered for design optimisation. This WEC is able to absorb power from heave, surge and pitch motion modes, making the optimisation problem nontrivial. The WEC dynamics is simulated using the spectral-domain model taking into account hydrodynamic forces, viscous drag, and power take-off forces. The design parameters for optimisation include the buoy radius, buoy height, tether inclination angles, and control variables (damping and stiffness). The WEC design is optimised for the wave climate at Albany test site in Western Australia considering unidirectional irregular waves. Two objective functions are considered: (i) maximisation of the annual average power output, and (ii) minimisation of the levelised cost of energy (LCoE) for a given sea site. The LCoE calculation is approximated as a ratio of the produced energy to the significant mass of the system that includes the mass of the buoy and anchor system. Six different heuristic optimisation methods are applied in order to evaluate and compare the performance of the best known evolutionary algorithms, a swarm intelligence technique and a numerical optimisation approach. The results demonstrate that if we are interested in maximising energy production without taking into account the cost of manufacturing such a system, the buoy should be built as large as possible (20 m radius and 30 m height). However, if we want the system that produces cheap energy, then the radius of the buoy should be approximately 11-14~m while the height should be as low as possible. These results coincide with the overall design that Carnegie Clean Energy has selected for its CETO 6 multi-moored unit. However, it should be noted that this study is not informed by them, so this can be seen as an independent validation of the design choices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源