论文标题
$ h_0 $重建IA型超新星,重子振荡和重力镜头时间延期
$H_0$ Reconstruction with Type Ia Supernovae, Baryon Acoustic Oscillation and Gravitational Lensing Time-Delay
论文作者
论文摘要
在本地距离梯子值和\ emph {planck}宇宙微波背景测量之间,在$λ$ CDM模型之间,现在有一个持续的$ h_0 $ - 现在,现在以超过$ \ gtrsim4σ$级别的水平和\ emph {planck} cosmic微波背景测量。我们使用三个低红移距离探针以宇宙学模型的方式重建$ h(z)$,包括来自Baryon声学振荡的最新数据,IA型Supernova和四个重力镜头时间 - 时间播放观测值。我们采用$ h(z)$的一般参数模型,并在drag epoch的声音范围内假设高斯先验,$ r _ {\ mathrm s} $,来自\ emph {planck}的测量。使用万神经SN IA和BAO数据重建的$ h_0 $与\ emph {planck} flat $λ$ cdm值一致。当包括GLTD数据时,$ H_0 $会略微增加,但在$ \ sim2.5σ$级别的本地测量值中保持不变。我们的重建对低红移的黑暗部门视而不见,我们重申了较早的声称,即不可能通过修改低红移宇宙的能源预算来解决哈勃张力。我们进一步预测了从desi和LSST的GLTD数据的未来现实模拟BAO数据的约束能力,结合了这些数据,我们预计推断的$ h_0 $的不确定性将通过$ \ sim 38 \%$提高,达到$σ_{H_0}} {h_0} \ acter of biolt of 0.56 $ nockneyty级别。
There is a persistent $H_0$-tension, now at more than $\gtrsim 4σ$ level, between the local distance ladder value and the \emph{Planck} cosmic microwave background measurement, in the context of flat $Λ$CDM model. We reconstruct $H(z)$ in a cosmological-model-independent way using three low-redshift distance probes including the latest data from baryon acoustic oscillation, Type Ia supernova and four gravitational lensing Time-Delay observations. We adopt general parametric models of $H(z)$ and assume a Gaussian prior on the sound horizon at drag epoch, $r_{\mathrm s}$, from \emph{Planck} measurement. The reconstructed $H_0$ using Pantheon SN Ia and BAO data are consistent with the \emph{Planck} flat $Λ$CDM value. When including the GLTD data, $H_0$ increases mildly, yet remaining discrepant with the local measurement at $\sim 2.5σ$ level. Our reconstructions being blind to the dark sectors at low redshift, we reaffirm the earlier claims that the Hubble tension is not likely to be solved by modifying the energy budget of the low-redshift universe. We further forecast the constraining ability of future realistic mock BAO data from DESI and GLTD data from LSST, combining which, we anticipate that the uncertainty of the inferred $H_0$ would be improved by $\sim 38\%$, reaching $σ_{H_0} \approx 0.56$ uncertainty level.