论文标题
确定某些类型的对角线双苯胺方程的天然溶液数量的渐近行为
Determination of the asymptotic behavior of the number of natural solutions for certain types of diagonal Diophantine equations
论文作者
论文摘要
我们获得渐近溶液的渐近上限,以在纸张中的侧面 - $ n $中的超立方体中的对角线二芬太汀方程数: $ x_1 = x_2^k+...+x_s^k $, $ x_1^k = x_2^k+...+x_s^k $, $ x_1 = \ sum_ {j = 2}^s {x_j}^{k_j} $,其中$ k,s,k_j $是自然数字。
We obtain asymptotic upper bounds for the number of natural solutions of the following diagonal Diophantine equations in a hypercube with side - $N$ in the paper: $x_1 = x_2^k+...+x_s^k$, $x_1^k = x_2^k+...+x_s^k$, $x_1 = \sum_{j=2}^s {x_j}^{k_j}$, where $k,s,k_j$ are the natural numbers.