论文标题
结合受体配体复合物数量的平衡概率分布
Equilibrium Probability Distribution for Number of Bound Receptor-Ligand Complexes
论文作者
论文摘要
分子结合的现象,其中两个分子称为受体和配体,结合在一起形成配体受体复合物,在生物学上无处不在,对于所有维持生命的过程的准确功能至关重要。单个受体在热平衡处形成与周围配体分子的任何一个受体形成复合物的概率可以源自从吉布斯 - 波尔兹曼分布中获得的分区函数。我们将此方法扩展到由R受体和L配体组成的系统,以得出概率密度函数P(R; R,L),以在热平衡处找到R结合受体配体复合物。这一扩展使我们能够说明这个问题的两个方面,这些方面在单个受体问题中并不明显,即a)在R和L交换下结合复合物数量的平衡分布中可以预期的对称性,而从化学动力学方程式获得的结合复合物的数量是与P(r; r; r; r; r; r; r; r; r; r; r; r; r; r; r; r; r; r; r; r; r; r; r; r; r; r; r; r; r; r; r; r; r; r; r; r; r; r;最大; r; r; r; r; r; r; r; r; r; r; r; r;最大;我们得出R的数量波动,并提出了一种实际相关的分子传感应用,该应用受益于P(R; R,L)的知识。
The phenomenon of molecular binding, where two molecules, referred to as a receptor and a ligand, bind together to form a ligand-receptor complex, is ubiquitous in biology and essential for the accurate functioning of all life-sustaining processes. The probability of a single receptor forming a complex with any one of L surrounding ligand molecules at thermal equilibrium can be derived from a partition function obtained from the Gibbs-Boltzmann distribution. We extend this approach to a system consisting of R receptors and L ligands to derive the probability density function p(r;R,L) to find r bound receptor-ligand complexes at thermal equilibrium. This extension allows us to illustrate two aspects of this problem which are not apparent in the single receptor problem, namely, a) a symmetry to be expected in the equilibrium distribution of the number of bound complexes under exchange of R and L and b) the number of bound complexes obtained from chemical kinetic equations has an exact correspondence to the maximum probable value of r from the expression for p(r;R,L). We derive the number fluctuations of r and present a practically relevant molecular sensing application that benefits from the knowledge of p(r;R,L).