论文标题
在哈斯的单位索引上
On Hasse's Unit Index
论文作者
论文摘要
我们研究了HASSE单位索引$ q(l)$的分布,用于CM-FIELDS $ L = \ MATHBB {Q}(\ SQRT {D},\ SQRT {-1})$ as $ D $在正方正方形的整数之间变化。我们证明了$ d \ leq x $的数量,因此$ q(l)= 2 $与$ x/\ sqrt {\ log x} $成比例。
We study the distribution of Hasse's unit index $Q(L)$ for the CM-fields $L = \mathbb{Q}(\sqrt{d}, \sqrt{-1})$ as $d$ varies among positive squarefree integers. We prove that the number of $d\leq X$ such that $Q(L) = 2$ is proportional to $X/\sqrt{\log X}$.