论文标题
4球中的横向不变和外来表面
Transverse invariants and exotic surfaces in the 4-ball
论文作者
论文摘要
我们使用1倍的轮辋手术,在4球界定的3球结上,在3球中构造了许多平滑嵌入的,可定向的表面,这些结是成对的拓扑同位素,但不是环境差异的。我们使用它们在扰动的缝合浮子同源性上诱导的地图来区分表面。在此过程中,我们表明,温斯坦恢复性的上升表面诱导的恢复图可以保留结式浮子同源性中的横向不变。
Using 1-twist rim surgery, we construct infinitely many smoothly embedded, orientable surfaces in the 4-ball bounding a knot in the 3-sphere that are pairwise topologically isotopic, but not ambient diffeomorphic. We distinguish the surfaces using the maps they induce on perturbed sutured Floer homology. Along the way, we show that the cobordism map induced by an ascending surface in a Weinstein cobordism preserves the transverse invariant in knot Floer homology.