论文标题

PHI,原始人和泊松

Phi, Primorials, and Poisson

论文作者

Pollack, Paul, Pomerance, Carl

论文摘要

Prime $ P $的原始$ P \#$是所有Primes $ Q \ le P $的产品。令Pr $(n)$表示最大的Prime $ p $,其中$ p \#\ mid ϕ(n)$,其中$ ϕ $是Euler的主机函数。我们表明,pr $(n)$的正常顺序是$ \ log \ log n/\ log \ log \ log \ log n $。也就是说,pr $(n)\ sim \ log \ log n/\ log \ log \ log \ log n $ as $ n \ to to \ to \ to \ infty $在一组渐近密度的整数上1。我们还显示了最大的整数$ k $,带有$ k!\ mid ϕ(n)$的结果。

The primorial $p\#$ of a prime $p$ is the product of all primes $q\le p$. Let pr$(n)$ denote the largest prime $p$ with $p\# \mid ϕ(n)$, where $ϕ$ is Euler's totient function. We show that the normal order of pr$(n)$ is $\log\log n/\log\log\log n$. That is, pr$(n) \sim \log\log n/\log\log\log n$ as $n\to\infty$ on a set of integers of asymptotic density 1. In fact we show there is an asymptotic secondary term and, on a tertiary level, there is an asymptotic Poisson distribution. We also show an analogous result for the largest integer $k$ with $k!\mid ϕ(n)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源