论文标题
可逆多项式的镜子的特殊收藏
Exceptional Collections for Mirrors of Invertible Polynomials
论文作者
论文摘要
我们证明了与其最大对称组的可逆多项式的衍生矩阵因子化的派生类别的完整类别存在。这证明了Hirano-ouchi的猜想。在戈伦斯坦案中,我们还证明了由于高桥造成的猜想的更强版本。也就是说,完整的特殊收藏很强大。
We prove the existence of a full exceptional collection for the derived category of equivariant matrix factorizations of an invertible polynomial with its maximal symmetry group. This proves a conjecture of Hirano--Ouchi. In the Gorenstein case, we also prove a stronger version of this conjecture due to Takahashi. Namely, that the full exceptional collection is strong.