论文标题
高保真和强大的几何量子门超过动力学的门
High-fidelity and Robust Geometric Quantum Gates that Outperform Dynamical Ones
论文作者
论文摘要
几何阶段是由于其内置的噪声弹性功能而引起高保真和稳健的量子操作的一个有希望的元素。不幸的是,与相应的动力学相比,通常需要在多个级别/QUBITS之间进行复杂的相互作用,而较长的栅极时间之间的相互作用通常是限制的。在这里,我们提出了一个几何量子计算的一般框架,并通过时间优势控制技术的整合,其中发现最短的平滑几何路径可以实现加速的几何量子门,从而大大降低了由谐波效应和操作性不良引起的栅极误差。同时,我们忠实地在二维超导式晶格晶格的可扩展平台上实现了我们的想法,并具有简单且可实现的相互作用。此外,数值模拟表明,我们实现的几何门具有更高的保真度和更强的鲁棒性,这表现优于相应动力学的最佳性能。因此,我们的方案为可扩展的易于断层固态量子计算提供了一种有希望的替代方法。
Geometric phase is a promising element to induce high-fidelity and robust quantum operations due to its built-in noise-resilience feature. Unfortunately, its practical applications are usually circumscribed by requiring complex interactions among multiple levels/qubits and the longer gate-time than the corresponding dynamical ones. Here, we propose a general framework of geometric quantum computation with the integration of the time-optimal control technique, where the shortest smooth geometric path is found to realize accelerated geometric quantum gates, and thus greatly decreases the gate errors induced by both the decoherence effect and operational imperfections. Meanwhile, we faithfully implement our idea on a scalable platform of a two-dimensional superconducting transmon-qubit lattice, with simple and experimental accessible interactions. In addition, numerical simulations show that our implemented geometric gates possess higher fidelities and stronger robustness, which outperform the best performance of the corresponding dynamical ones. Therefore, our scheme provides a promising alternative way towards scalable fault-tolerant solid-state quantum computation.