论文标题

AFLT型Selberg积分

AFLT-type Selberg integrals

论文作者

Albion, Seamus P., Rains, Eric M., Warnaar, S. Ole

论文摘要

在2011年关于AGT猜想的论文中,Alba,Fateev,Litvinov和Tarnopolsky(AFLT)对Selberg积分的封闭式评估是对两个Jack多项式产品的积分,从而统一了众所周知的Kadell和Hua和Hua和Hua和Kadell Integrals。在本文中,我们使用各种对称函数和对称功能技术来证明AFLT积分的概括。其中包括(i)AFLT积分的$ \ Mathrm {a} _n $类似物,其中包含intapterand中的两个插孔多项式; (ii)(i)以$γ= 1 $(schur或gue案例)的概括,其中包含$ n+1 $ schur函数的产品; (iii)AFLT积分的椭圆概括,其中千斤顶多项式的作用由一对椭圆插值函数播放; (iv)麦克唐纳多项式的AFLT积分。

In their 2011 paper on the AGT conjecture, Alba, Fateev, Litvinov and Tarnopolsky (AFLT) obtained a closed-form evaluation for a Selberg integral over the product of two Jack polynomials, thereby unifying the well-known Kadell and Hua--Kadell integrals. In this paper we use a variety of symmetric functions and symmetric function techniques to prove generalisations of the AFLT integral. These include (i) an $\mathrm{A}_n$ analogue of the AFLT integral, containing two Jack polynomials in the integrand; (ii) a generalisation of (i) for $γ=1$ (the Schur or GUE case), containing a product of $n+1$ Schur functions; (iii) an elliptic generalisation of the AFLT integral in which the role of the Jack polynomials is played by a pair of elliptic interpolation functions; (iv) an AFLT integral for Macdonald polynomials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源