论文标题

最大的$(k,\ ell)$ - 无和子集

The largest $(k, \ell)$-sum-free subsets

论文作者

Jing, Yifan, Wu, Shukun

论文摘要

令$ \ mathscr {m} _ {(2,1)}(n)$为任何$ n $阳性整数集中最大的最大无和子集中的原始。一种添加组合物的旧猜想认为,存在常数$ c = c(2,1)$和一个函数$ω(n)\ to \ infty $ as $ n \ to \ to \ infty $,因此$ cn+ω(n)<\ m mathscr {m} {m} {M}常数$ c(2,1)$由Eberhard,Green和举止确定,而$ω(N)$的存在仍然很开放。 在本文中,我们研究了$(k,\ ell)$的类似猜想 - 无汇总集和限制的$(k,\ ell)$ - 无汇总集。我们确定每个$(k,\ ell)$的常数$ c(k,\ ell)$ - 无和套装,并确认无限多$(k,\ ell)$的猜想。

Let $\mathscr{M}_{(2,1)}(N)$ be the infimum of the largest sum-free subset of any set of $N$ positive integers. An old conjecture in additive combinatorics asserts that there is a constant $c=c(2,1)$ and a function $ω(N)\to\infty$ as $N\to\infty$, such that $cN+ω(N)<\mathscr{M}_{(2,1)}(N)<(c+o(1))N$. The constant $c(2,1)$ is determined by Eberhard, Green, and Manners, while the existence of $ω(N)$ is still wide open. In this paper, we study the analogous conjecture on $(k,\ell)$-sum-free sets and restricted $(k,\ell)$-sum-free sets. We determine the constant $c(k,\ell)$ for every $(k,\ell)$-sum-free sets, and confirm the conjecture for infinitely many $(k,\ell)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源