论文标题
逻辑混合模型中的稀疏协方差估计
Sparse Covariance Estimation in Logit Mixture Models
论文作者
论文摘要
本文介绍了一种新的数据驱动方法,用于估计逻辑混合模型中随机系数的稀疏协方差矩阵。研究人员通常在两个极端假设之一中指定logit混合模型中的协方差矩阵:不受限制的完全协方差矩阵(允许所有随机系数之间的相关性)或受限制的对角线矩阵(完全不允许相关性)。我们的目标是找到我们估计协方差的相关系数的最佳子集。我们提出了一个名为MISC的新估计器,该估计器使用混合功能优化程序(MIO)程序,以找到与Markov Chain Monte Carlior(MCMC)的任何所需的稀疏度级别的相关系数子集的协方差矩阵,对应于相关系数的子集,从而对应于相关系数的子集。使用样本外验证确定协方差矩阵的最佳稀疏度。我们证明了MISC从合成数据中正确恢复真正的协方差结构的能力。在使用对运输方式上的偏好调查的经验例证中,我们使用MISC获得稀疏的协方差矩阵,指示对属性的偏好如何相互关系。
This paper introduces a new data-driven methodology for estimating sparse covariance matrices of the random coefficients in logit mixture models. Researchers typically specify covariance matrices in logit mixture models under one of two extreme assumptions: either an unrestricted full covariance matrix (allowing correlations between all random coefficients), or a restricted diagonal matrix (allowing no correlations at all). Our objective is to find optimal subsets of correlated coefficients for which we estimate covariances. We propose a new estimator, called MISC, that uses a mixed-integer optimization (MIO) program to find an optimal block diagonal structure specification for the covariance matrix, corresponding to subsets of correlated coefficients, for any desired sparsity level using Markov Chain Monte Carlo (MCMC) posterior draws from the unrestricted full covariance matrix. The optimal sparsity level of the covariance matrix is determined using out-of-sample validation. We demonstrate the ability of MISC to correctly recover the true covariance structure from synthetic data. In an empirical illustration using a stated preference survey on modes of transportation, we use MISC to obtain a sparse covariance matrix indicating how preferences for attributes are related to one another.