论文标题

非单明简单集的同喻理论

Homotopy Theory of Non-singular Simplicial Sets

论文作者

Fjellbo, Vegard

论文摘要

如果简单的简单简单嵌入,则据说简单套件是非单一的。令$ SSET $表示简单集的类别。我们证明,其对象是非单明的简单集的完整子类别$ nsset $,承认了一个模型结构,因此$ nsset $变为Quillen等于$ SSET $,该$ SSET $由Quillen引起的标准模型结构。 $ NSSET $上的模型结构是从$ SSET $正确引起的,并且它使$ NSSET $成为适当的合并生成的模型类别。与托马森(Thomason)在小型类别上的模型结构(1980)和posets上的Raptis模型结构(2010)一起形成了Quillen等效模型类别的方形图,其中右伴随的子标准是通勤的。

A simplicial set is said to be non-singular if its non-degenerate simplices are embedded. Let $sSet$ denote the category of simplicial sets. We prove that the full subcategory $nsSet$ whose objects are the non-singular simplicial sets admits a model structure such that $nsSet$ becomes is Quillen equivalent to $sSet$ equipped with the standard model structure due to Quillen. The model structure on $nsSet$ is right-induced from $sSet$ and it makes $nsSet$ a proper cofibrantly generated model category. Together with Thomason's model structure on small categories (1980) and Raptis' model structure on posets (2010) these form a square-shaped diagram of Quillen equivalent model categories in which the subsquare of right adjoints commutes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源