论文标题
在极端分位数上得分
Scoring Predictions at Extreme Quantiles
论文作者
论文摘要
在极端尾部的分位数预测在众多应用中引起了人们的关注。极值建模为这一点预测问题提供了各种竞争性预测指标。评估一组竞争预测因素的一种常见方法是在给定情况下评估其预测性能。但是,由于这种推论问题的极端性质,可能在历史记录中看不到预测的分位数,尤其是在样本量很小的情况下。这种情况对预测的实现构成了一个问题。在本文中,我们提出了两种非参数评分方法,以评估极端分位预测机制。所提出的评估方法基于预测数据不同部分上同样极端分位数的顺序。然后,我们使用分位数评分函数来评估竞争预测因子。将评分方法的性能与常规评分方法进行了比较,并且在一项模拟研究中证明了前者方法的优越性。然后,将这些方法应用于来自Los Alamos国家实验室的重新分析网络网络数据,并在加利福尼亚州的一个车站可从全球历史气候网络获得。
Prediction of quantiles at extreme tails is of interest in numerous applications. Extreme value modelling provides various competing predictors for this point prediction problem. A common method of assessment of a set of competing predictors is to evaluate their predictive performance in a given situation. However, due to the extreme nature of this inference problem, it can be possible that the predicted quantiles are not seen in the historical records, particularly when the sample size is small. This situation poses a problem to the validation of the prediction with its realisation. In this article, we propose two non-parametric scoring approaches to assess extreme quantile prediction mechanisms. The proposed assessment methods are based on predicting a sequence of equally extreme quantiles on different parts of the data. We then use the quantile scoring function to evaluate the competing predictors. The performance of the scoring methods is compared with the conventional scoring method and the superiority of the former methods are demonstrated in a simulation study. The methods are then applied to reanalyse cyber Netflow data from Los Alamos National Laboratory and daily precipitation data at a station in California available from Global Historical Climatology Network.