论文标题
在图中包装和盖上球,不包括未成年人
Packing and covering balls in graphs excluding a minor
论文作者
论文摘要
我们证明,对于每一个整数$ t \ ge 1 $,都有一个常数$ c_t $,使得每$ k_t $ -minor -minor-fragr-fragr-fragr $ g $,以及每套$ g $中的$ s $ s $ s $ s $ s $,是$ g $ $ s $ $ s $ s $ c_t $ $ c_ $ $ $ s $ s $ s $ s $ s $ s $ s $ s $ s $ s by by by by by by the by $ s $ s的最小值。这是由Chepoi,Estellon和Vaxès于2007年在平面图和具有相同半径的球的猜想中猜想。
We prove that for every integer $t\ge 1$ there exists a constant $c_t$ such that for every $K_t$-minor-free graph $G$, and every set $S$ of balls in $G$, the minimum size of a set of vertices of $G$ intersecting all the balls of $S$ is at most $c_t$ times the maximum number of vertex-disjoint balls in $S$. This was conjectured by Chepoi, Estellon, and Vaxès in 2007 in the special case of planar graphs and of balls having the same radius.