论文标题
实现分裂脉冲X射线光子相关光谱,以测量复杂物质中的超快动力学
Realizing split-pulse x-ray photon correlation spectroscopy to measure ultrafast dynamics in complex matter
论文作者
论文摘要
已经提出了分裂脉冲X射线光子相关光谱,作为X射线游离电子激光器使得独特的功能之一。它可以表征原子尺度的结构动力学,该动力学决定了各种无序材料系统的宏观特性。实验概念的核心是X射线光学器件,能够将单个相干的飞秒X射线脉冲拆分为两个不同的脉冲,在它们之间引入可调节的时间延迟,然后在样品位置重新组合两个脉冲,以便它们在快速连续中产生两个连贯的散射模式。此类光学元件的最新发展表明,尽管在硬X射线波长处的真实“振幅拆分”光学仍然是一个技术挑战,但波前和波长拆分都是可行的,能够将两个微米尺寸的聚焦光束传递给样品,并具有足够的相对稳定性。但是,我们在这里表明,使用这些梁拆分技术进行斑点可见性光谱的常规方法可能是有问题的,甚至导致斑点可见性和材料动力学的脱钩。作为响应,我们讨论了实验方法和数据分析方案的详细信息,以解决由波长和波长拆分设置引起的微妙光束差异引起的问题。我们还表明,在一些散射几何形状中,可以通过同时使用两个略有不同的入射角和略有不同波长的梁来解决Q空间不匹配。样品结构中的时间相关性不是测量弱斑点模式的可见性,而是在汇总斑点模式的空间自相关的“侧频带”中编码,并且可以从实验数据中直接检索。我们通过数值模拟证明了这一点。
Split-pulse x-ray photon correlation spectroscopy has been proposed as one of the unique capabilities made possible with the x-ray free electron lasers. It enables characterization of atomic scale structural dynamics that dictates the macroscopic properties of various disordered material systems. Central to the experimental concept are x-ray optics that are capable of splitting individual coherent femtosecond x-ray pulse into two distinct pulses, introduce an adjustable time delay between them, and then recombine the two pulses at the sample position such that they generate two coherent scattering patterns in rapid succession. Recent developments in such optics showed that, while true 'amplitude splitting' optics at hard x-ray wavelengths remains a technical challenge, wavefront and wavelength splitting are both feasible, able to deliver two micron sized focused beams to the sample with sufficient relative stability. Here, we however show that the conventional approach to speckle visibility spectroscopy using these beam splitting techniques can be problematic, even leading to a decoupling of speckle visibility and material dynamics. In response, we discuss the details of the experimental approaches and data analysis protocols for addressing issues caused by subtle beam dissimilarities for both wavefront and wavelength splitting setups. We also show that in some scattering geometries, the Q-space mismatch can be resolved by using two beams of slightly different incidence angle and slightly different wavelengths at the same time. Instead of measuring the visibility of weak speckle patterns, the time correlation in sample structure is encoded in the 'side band' of the spatial autocorrelation of the summed speckle patterns, and can be retrieved straightforwardly from the experimental data. We demonstrate this with a numerical simulation.