论文标题

强大的两步小波对时间序列模型的推断

Robust Two-Step Wavelet-Based Inference for Time Series Models

论文作者

Guerrier, Stéphane, Molinari, Roberto, Victoria-Feser, Maria-Pia, Xu, Haotian

论文摘要

复杂的时间序列模型,例如ARMA $(P,Q)$模型,具有额外的噪音,随机步行,舍入错误和/或漂移越来越多地用于在生物学,生态学,工程和经济学等领域中进行数据分析,在这些领域中,观察到的信号的长度可能非常大。从这些模型上进行推断和/或预测可能是高度挑战的,原因是:(i)数据可能包含可能不利影响估计过程的离群值; (ii)当模型不仅包括几个参数和/或时间序列较大时,计算复杂性可能会变得过高; (iii)模型构建和/或选择为先前任务增加了另一层(计算)复杂性; (iv)解决(i),(ii)和(iii)同时解决的解决方案在实践中不存在。因此,本文旨在通过基于小波差异的有界影响m-示威者的稳健两步估算的一般框架来共同解决这些挑战。从这个角度来看,我们首先开发了后一个估计器的联合渐近正态性的条件,从而为基于规模的信号分析提供了必要的工具(直接)推断。利用仅计算一次的第一个步骤估计器的模型无关权重,然后我们使用一般小波矩(GMWM)的框架来开发两步稳健估计器的渐近性能,从而确定可靠的GMWM(rgmwm),然后将其用于庞大的时间限制估计和范围均计算。仿真研究说明了RGMWM估计器的良好有限样本性能,并应用了示例突出了所提出方法的实际相关性。

Complex time series models such as (the sum of) ARMA$(p,q)$ models with additional noise, random walks, rounding errors and/or drifts are increasingly used for data analysis in fields such as biology, ecology, engineering and economics where the length of the observed signals can be extremely large. Performing inference on and/or prediction from these models can be highly challenging for several reasons: (i) the data may contain outliers that can adversely affect the estimation procedure; (ii) the computational complexity can become prohibitive when models include more than just a few parameters and/or the time series are large; (iii) model building and/or selection adds another layer of (computational) complexity to the previous task; and (iv) solutions that address (i), (ii) and (iii) simultaneously do not exist in practice. For this reason, this paper aims at jointly addressing these challenges by proposing a general framework for robust two-step estimation based on a bounded influence M-estimator of the wavelet variance. In this perspective, we first develop the conditions for the joint asymptotic normality of the latter estimator thereby providing the necessary tools to perform (direct) inference for scale-based analysis of signals. Taking advantage of the model-independent weights of this first-step estimator that are computed only once, we then develop the asymptotic properties of two-step robust estimators using the framework of the Generalized Method of Wavelet Moments (GMWM), hence defining the Robust GMWM (RGMWM) that we then use for robust model estimation and inference in a computationally efficient manner even for large time series. Simulation studies illustrate the good finite sample performance of the RGMWM estimator and applied examples highlight the practical relevance of the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源