论文标题
基质值高斯过程的波动
Fluctuations for matrix-valued Gaussian processes
论文作者
论文摘要
我们考虑一个对称矩阵效率高斯进程$ y^{(n)} =(y^{(n)}(t); t \ ge0)$及其经验频谱测量过程$μ^{(n)} =(μ__{t}^{(n)}; t \ ge0)$。在$ y^{(n)} $的协方差函数的一些温和条件下,我们找到了$$ z_f^{(n)}的限制分布的明确表达式:= \ left(\ big(z_ {f_1}^{(n)}(n)}(t)(t),\ ldots,\ ldots,\ ldots,z___r} f_r}^\ big t \ ge0 \ right),$ f,其中$ f =(f_1,\ dots,f_r)$,对于$ r \ ge 1 $,每个组件属于大型测试功能,$$ z_ {f}^{(n)}(n)}(t):= = = = = = = = = n \ int _ {\ mathbb {r}} f(x)μ_{t}^{(n)}(\ text {d} x) - n \ mathbb {e} \ left [\ int _ {\ int _ {\ mathb {\ mathb {r} {r}} f(x) x)\ right]。$$更准确地说,我们建立了$ z_f^{(n)} $的稳定收敛性,并确定其限制分布。 $ z_ {f}^{(n)}(t)$的法律总变化距离的上限与限制分布,用于测试功能$ f $和$ t \ geq0 $固定。
We consider a symmetric matrix-valued Gaussian process $Y^{(n)}=(Y^{(n)}(t);t\ge0)$ and its empirical spectral measure process $μ^{(n)}=(μ_{t}^{(n)};t\ge0)$. Under some mild conditions on the covariance function of $Y^{(n)}$, we find an explicit expression for the limit distribution of $$Z_F^{(n)} := \left( \big(Z_{f_1}^{(n)}(t),\ldots,Z_{f_r}^{(n)}(t)\big) ; t\ge0\right),$$ where $F=(f_1,\dots, f_r)$, for $r\ge 1$, with each component belonging to a large class of test functions, and $$ Z_{f}^{(n)}(t) := n\int_{\mathbb{R}}f(x)μ_{t}^{(n)}(\text{d} x)-n\mathbb{E}\left[\int_{\mathbb{R}}f(x)μ_{t}^{(n)}(\text{d} x)\right].$$ More precisely, we establish the stable convergence of $Z_F^{(n)}$ and determine its limiting distribution. An upper bound for the total variation distance of the law of $Z_{f}^{(n)}(t)$ to its limiting distribution, for a test function $f$ and $t\geq0$ fixed, is also given.