论文标题
通用L $ _p $ - 使用交叉梯度约束的重力和磁数据的关节反转
Generalized L$_p$-norm joint inversion of gravity and magnetic data using cross-gradient constraint
论文作者
论文摘要
提出了使用交叉梯度约束的重力和磁数据的$ l_ {p} $的通用统一方法。提出的框架包含了使用$ L_ {0} $,$ L_ {1} $和$ L_ {2} $的稳定器 - 模型参数的规范和/或模型参数的梯度。此外,该公式是从独立反转单个数据集的标准方法开发的,因此,还促进了包括必要模型和数据加权矩阵的包含,这些模型和数据加权矩阵提供了例如深度权重和强制性约束数据。因此,可以使用开发的有效算法来提供与地球物理群落相关的平滑,稀疏或块状靶标。 在这里,描述了所有稳定项的包含和数据测量值的非线性目标函数,可以通过在线性方程上施加平稳性来最小化,该线性方程将目标函数应用于启动模型的线性化而产生。为了在每次迭代中求解所得的线性系统,使用了共轭梯度算法。然后,为稀疏和光滑重建的三维合成模型验证了一般框架,并将结果与个体重力和磁反转的结果进行了比较。证明提出的关节反转算法是实用的,并且显着改善了通过独立反转获得的重建模型。
A generalized unifying approach for $L_{p}$-norm joint inversion of gravity and magnetic data using the cross-gradient constraint is presented. The presented framework incorporates stabilizers that use $L_{0}$, $L_{1}$, and $L_{2}$-norms of the model parameters, and/or the gradient of the model parameters. Furthermore, the formulation is developed from standard approaches for independent inversion of single data sets, and, thus, also facilitates the inclusion of necessary model and data weighting matrices that provide, for example, depth weighting and imposition of hard constraint data. The developed efficient algorithm can, therefore, be employed to provide physically-relevant smooth, sparse, or blocky target(s) which are relevant to the geophysical community. Here, the nonlinear objective function, that describes the inclusion of all stabilizing terms and the fit to data measurements, is minimized iteratively by imposing stationarity on the linear equation that results from applying linearization of the objective function about a starting model. To numerically solve the resulting linear system, at each iteration, the conjugate gradient algorithm is used. The general framework is then validated for three-dimensional synthetic models for both sparse and smooth reconstructions, and the results are compared with those of individual gravity and magnetic inversions. It is demonstrated that the presented joint inversion algorithm is practical and significantly improves reconstructed models obtained by independent inversion.