论文标题
分级几何形状中的ricci张量
Ricci tensor in graded geometry
论文作者
论文摘要
我们定义了2度的NQ符号歧管的RICCI张量的概念,并表明它对应于Courant Algebroids上的标准广义Ricci张量。我们使用与分级歧管上的广义度量兼容的合适的连接概念。
We define the notion of the Ricci tensor for NQ symplectic manifolds of degree 2 and show that it corresponds to the standard generalized Ricci tensor on Courant algebroids. We use an appropriate notion of connections compatible with the generalized metric on the graded manifold.