论文标题
用一般拆分功能进行超图切割
Hypergraph Cuts with General Splitting Functions
论文作者
论文摘要
图表中的最低$ s $ - $ t $切割问题是组合优化中最根本的问题之一,并且剪切剪辑构成了整个离散数学,理论计算机科学,操作研究和数据科学的基础算法。尽管图是成对关系的标准模型,但HyperGraphs为模型多路关系提供了灵活性,现在是复杂数据和系统的标准模型。但是,当从图到超图概括时,“剪切的超edge”的概念尚不清楚,因为可以通过多种方式将Hypereedge的节点分开。在这里,我们通过考虑将两个端子节点分离超图的问题来开发一个用于削减超图的框架,以最大程度地减少拆分超匹配处的罚款之和。在我们的设置中,分裂相同的超越的不同方式具有不同的惩罚,惩罚是由我们所说的分裂功能编码的。 我们的框架在HyperGraph Cuts的基础上打开了丰富的空间。我们首先确定一类基于基于基数的高架分裂功能,仅取决于分裂每一侧的节点数量。在这种情况下,我们表明,一般的HyperGraph $ S $ - $ T $切割问题可以减少到可处理的图形$ s $ - $ t $切割问题时,并且仅当分裂功能是supperular的情况下。我们还确定了广泛的非管状分裂函数的制度,该问题是NP-HARD的。我们还分析了至少三个端子节点的多路切割的扩展,并确定了一类天然的分裂函数,可以以近似保护的方式减少该问题,从而在图中以节点加权的多路切割问题,再次受supdodularity属性。最后,我们概述了有关一般超图削减问题的几个公开问题。
The minimum $s$-$t$ cut problem in graphs is one of the most fundamental problems in combinatorial optimization, and graph cuts underlie algorithms throughout discrete mathematics, theoretical computer science, operations research, and data science. While graphs are a standard model for pairwise relationships, hypergraphs provide the flexibility to model multi-way relationships, and are now a standard model for complex data and systems. However, when generalizing from graphs to hypergraphs, the notion of a "cut hyperedge" is less clear, as a hyperedge's nodes can be split in several ways. Here, we develop a framework for hypergraph cuts by considering the problem of separating two terminal nodes in a hypergraph in a way that minimizes a sum of penalties at split hyperedges. In our setup, different ways of splitting the same hyperedge have different penalties, and the penalty is encoded by what we call a splitting function. Our framework opens a rich space on the foundations of hypergraph cuts. We first identify a natural class of cardinality-based hyperedge splitting functions that depend only on the number of nodes on each side of the split. In this case, we show that the general hypergraph $s$-$t$ cut problem can be reduced to a tractable graph $s$-$t$ cut problem if and only if the splitting functions are submodular. We also identify a wide regime of non-submodular splitting functions for which the problem is NP-hard. We also analyze extensions to multiway cuts with at least three terminal nodes and identify a natural class of splitting functions for which the problem can be reduced in an approximation-preserving way to the node-weighted multiway cut problem in graphs, again subject to a submodularity property. Finally, we outline several open questions on general hypergraph cut problems.