论文标题
Coadhexhinexhoint Orbits的规范域
Canonical domains for coadjoint orbits
论文作者
论文摘要
本文介绍了在紧凑的半神经谎言代数的任何共同连接轨道的适当致密的子集上定义的两个真实分析符号切除术。第一个呼吸态将开放密集子集发送到标准cotangent束的有界子集。第二个呼吸态已针对相关的非紧凑型半光合物谎言代数的双曲线共同轨道的界面子集。因此,紧凑型谎言代数的共同连接轨道是cotangent束的域的符号紧凑型,并且与非紧凑型半密布躺在代数的双曲线轨道具有符号二元性。
This paper describes two real analytic symplectomorphisms defined on appropriate dense open subsets of any coadjoint orbit of a compact semisimple Lie algebra. The first symplectomorphism sends the open dense subset to a bounded subset of a standard cotangent bundle. The second symplectomorphism has target a bounded subset of a hyperbolic coadjoint orbit of an associated non-compact semi-simple Lie algebra. Therefore, coadjoint orbits of compact Lie algebras are symplectic compactifications of domains of cotangent bundles, and are in symplectic duality with hyperbolic orbits of non-compact semisimple Lie algebras.