论文标题

光子到达的时间标记有许多频道,次纳秒秒的死时间,高吞吐量和光纤远程同步

Photon arrival time tagging with many channels, sub-nanosecond deadtime, very high throughput, and fiber optic remote synchronization

论文作者

Wahl, Michael, Roehlicke, Tino, Kulisch, Sebastian, Rohilla, Sumeet, Kraeamer, Benedikt, Hocke, Andreas C.

论文摘要

时间相关的单光子计数(TCSPC)和单个光子检测的时间标记是许多量子光学实验和其他应用物理领域的强大工具。使用TCSPC,例如,出于荧光寿命测量的目的,通常由于死时间损失和堆积而受到速度的限制。我们表明,可以通过将定时电子的死时间减少到探测器信号的速度,同时保持高时间分辨率的同时,可以提高这种限制。快速数据采集的一种补充方法是通过同时读取许多检测器通道的并行化。这给TCSPC系统的数据吞吐量提供了很高的要求,尤其是在单个光子到达的时间标记时。在这里,我们提出了一种新的设计方法,可为多达16个输入通道提供支持,短时间的650 PS,非常高的标记吞吐量以及80 PS的计时分辨率。为了促进具有最高精度的多种此类仪器的远程同步,新的TCSPC电子设备为白兔光纤网络提供了一个接口。除了天文学领域的基本研究之外,这种远程同步任务通常在量子通信网络中常规出现,该量子通信网络以数十公里的阶段为节点距离。除了显示新的TCSPC电子产品的设计特征和基准结果外,我们还提出了医学研究中频谱分辨率和高速荧光寿命成像的应用结果。我们此外,还可以校正检测器信号中检测器信号中发生的脉冲螺旋向上,以及该数据采集方案在准确性和效率方面的性能。

Time-Correlated Single Photon Counting (TCSPC) and time tagging of individual photon detections are powerful tools in many quantum optical experiments and other areas of applied physics. Using TCSPC, e.g., for the purpose of fluorescence lifetime measurements, is often limited in speed due to dead-time losses and pile-up. We show that this limitation can be lifted by reducing the dead-time of the timing electronics to the absolute minimum imposed by the speed of the detector signals while maintaining high temporal resolution. A complementing approach to speedy data acquisition is parallelization by means of simultaneous readout of many detector channels. This puts high demands on the data throughput of the TCSPC system, especially in time tagging of individual photon arrivals. Here, we present a new design approach, supporting up to 16 input channels, an extremely short dead-time of 650 ps, very high time tagging throughput, and a timing resolution of 80 ps. In order to facilitate remote synchronization of multiple such instruments with highest precision, the new TCSPC electronics provide an interface for White Rabbit fiber optic networks. Beside fundamental research in the field of astronomy, such remote synchronization tasks arise routinely in quantum communication networks with node to node distances on the order of tens of kilometers. In addition to showing design features and benchmark results of new TCSPC electronics, we present application results from spectrally resolved and high-speed fluorescence lifetime imaging in medical research. We furthermore show how pulse-pile-up occurring in the detector signals at high photon flux can be corrected for and how this data acquisition scheme performs in terms of accuracy and efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源