论文标题
宇宙学,星系和星系簇的引力理论
Gravitational Theory of Cosmology, Galaxies and Galaxy Clusters
论文作者
论文摘要
修改后的引力理论解释了早期宇宙和迟到的宇宙学,银河系和星系群集动力学。修改后的重力(MOG)理论将一般相对性(GR)延伸到三个额外的自由度:标量场$ g $,增强了牛顿重力常数$ g_n $的强度,一个引力1个旋转1个矢量vector Graviton Fieldon Field $ ϕ_μ $,以及有效质量$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $。对于$ t <t _ {\ rm rec} $,其中$ t _ {\ rm rec} $表示重组和重新离子的时间,向量graveTON $ρ_B$的密度,$ρ_b$,其中$ρ_b$是Baryons的密度,而$ t> $ t> $ t> $ $ $ c}物质密度由$ω_m=ω_b+ω_________________________________________+ω_ν$进行参数化。对于普朗克协作获得的宇宙参数值,可以像$λ$ CDM模型中一样拟合CMB声学振荡功率谱,极化和镜头数据。当Baryon密度$ρ_b$主导晚期宇宙时,Mog解释了星系旋转曲线,星系簇,星系镜头和星系簇的动力学,而没有主导的暗物质。
A modified gravitational theory explains early universe and late time cosmology, galaxy and galaxy cluster dynamics. The modified gravity (MOG) theory extends general relativity (GR) by three extra degrees of freedom: a scalar field $G$, enhancing the strength of the Newtonian gravitational constant $G_N$, a gravitational, spin 1 vector graviton field $ϕ_μ$, and the effective mass $μ$ of the ultralight spin 1 graviton. For $t < t_{\rm rec}$, where $t_{\rm rec}$ denotes the time of recombination and re-ionization, the density of the vector graviton $ρ_ϕ> ρ_b$, where $ρ_b$ is the density of baryons, while for $t > t_{\rm rec}$ we have $ρ_b > ρ_ϕ$. The matter density is parameterized by $Ω_M=Ω_b+Ω_ϕ+Ω_r$ where $Ω_r=Ω_γ+Ω_ν$. For the cosmological parameter values obtained by the Planck Collaboration, the CMB acoustical oscillation power spectrum, polarization and lensing data can be fitted as in the $Λ$CDM model. When the baryon density $ρ_b$ dominates the late time universe, MOG explains galaxy rotation curves, the dynamics of galaxy clusters, galaxy lensing and the galaxy clusters matter power spectrum without dominant dark matter.