论文标题
观察性证据证明了射线射线星系中高能中微子核中高能中微子的起源
Observational evidence for the origin of high-energy neutrinos in parsec-scale nuclei of radio-bright active galaxies
论文作者
论文摘要
Icecube天文台连续收集有关高能天体中微子的观察信息。但是,中微子的来源仍然未知。在这项研究中,我们使用了非常长的基线干涉法(VLBI)数据进行完全的VLBI-FLUX密度有限的活性银河核(AGN)样本。我们以统计方式解决了以高于200 TEV的能量的天体物理中微子的起源问题。发现与IceCube事件相关的AGN通常比其他样品更强。偶然巧合的后试验概率为0.2%。我们选择了四个最强的AGN作为高度可能的关联:3C 279,NRAO 530,PKS 1741-038和PKS 2145+067。此外,根据Ratan-600的监测,我们发现,在其他几个VLBI选择的AGN的中微子到达时间以上的频率上,无线电发射的增加。这种行为最明显的例子是PKS 1502+106。我们得出的结论是,具有明亮的多普勒促进喷气式的AGN构成了重要的中微子来源。高能中微子是在其中央parsec尺度区域产生的,可能是在积聚磁盘上或周围的质子 - 光子相互作用中产生的。可能与中微子相关的无线电AGN具有非常多样化的伽马射线特性,这表明在AGN的不同区域可能会产生伽马射线和中微子,而不是直接相关的。但是,需要射击轴的一个小视角才能检测到它们中的任何一个。
Observational information on high-energy astrophysical neutrinos is being continuously collected by the IceCube observatory. However, the sources of neutrinos are still unknown. In this study, we use radio very-long-baseline interferometry (VLBI) data for a complete VLBI-flux-density limited sample of active galactic nuclei (AGN). We address the problem of the origin of astrophysical neutrinos with energies above 200 TeV in a statistical manner. It is found that AGN positionally associated with IceCube events have typically stronger parsec-scale cores than the rest of the sample. The post-trial probability of a chance coincidence is 0.2%. We select the four strongest AGN as highly probable associations: 3C 279, NRAO 530, PKS 1741-038, and PKS 2145+067. Moreover, we find an increase of radio emission at frequencies above 10 GHz around neutrino arrival times for several other VLBI-selected AGN on the basis of RATAN-600 monitoring. The most pronounced example of such behavior is PKS 1502+106. We conclude that AGN with bright Doppler-boosted jets constitute an important population of neutrino sources. High-energy neutrinos are produced in their central parsec-scale regions, probably in proton-photon interactions at or around the accretion disk. Radio-bright AGN that are likely associated with neutrinos have very diverse gamma-ray properties suggesting that gamma-rays and neutrinos may be produced in different regions of AGN and not directly related. A small viewing angle of the jet-disk axis is, however, required to detect either of them.