论文标题
关于Schatten P级操作员的投射张量产品的定期性
On arens regularity of projective tensor product of Schatten p-class operators
论文作者
论文摘要
在本文中,我们讨论了Schatten P级运营商投射张量产品的定期性。我们使用ülger给出的双重条件证明$ s_p(\ mathcal h)\ otimes^γs_q(\ mathcal h)$不是普通的。我们进一步证明$ b(s_2(\ mathcal h))\ otimes^γs_2(\ mathcal h)$不是Arens常规(相对于通常的乘法),而对于Schur产品是规则的。因此,我们证明了在\ cite {ulger}中给出的双重条件的重要性,以及通过某些具体示例证明其规律性或不规则性的便利性。
In this paper we discuss the Arens regularity of projective tensor product of Schatten p-class operators. We use the biregularity condition given by Ülger to prove that $S_p(\mathcal H)\otimes^γS_q(\mathcal H)$ is not Arens regular. We further prove that $B(S_2(\mathcal H))\otimes^γS_2(\mathcal H)$ is not Arens regular(with respect to usual multiplication) while it is regular with respect to Schur product. Thus we demonstrate the importance of biregularity condition given in \cite{Ulger} and the convenience of its use to prove Arens regularity or irregularity through some concrete examples.