论文标题

具有给定围栏或集团数字的图形的连接性和特征值

Connectivity and eigenvalues of graphs with given girth or clique number

论文作者

Hong, Zhen-Mu, Lai, Hong-Jian, Xia, Zheng-Jiang

论文摘要

令$κ'(g)$,$κ(g)$,$μ__{n-1}(g)$和$μ_1(g)$表示边缘连接性,顶点连接性,代数连接性,laplacian Spectral Spectral Spectral Radius分别为$ G $。在本文中,我们证明,对于整数$ k \ geq 2 $和$ r \ geq 2 $,以及任何简单的图$ g $ of订单$ n $,带有最低度$δ\ geq k $,girth $ g \ geq 3 $和clique numble $ω(g)\ leq r $ \ geq \ frac {(k-1)n} {n(δ,g)(n-n(δ,g))} $或者如果$μ__{n-1}(g)\ geq \ geq \ frac {(k-1)n} n}φ(geq(k-1)N} {φ(δ(δ,r)(n-φ(n-φ(Δ,Δ)$ n(n-φ(n-;具有$δ$的简单图,带有围绕的$ g $,以及$φ(δ,r)= \ max \ {Δ+1,\ lfloor \ frac {rΔ} {r-1} {r-1} {r-1} \ rfloor \} $。涉及$μ_{n-1}(g)$和$ \ frac {μ_1(g)} {μ__{n-1}(g)} $的模拟结果,以表征具有固定Girth和Clique数字的图形的顶点连接性的表征。以前的结果[线性代数应用。 439(2013)3777--3784],[线性代数应用。 578(2019)411--424],[线性代数应用。 579(2019)72--88],[应用。数学。计算。 344-345(2019)141--149]和[电子J.线性代数34(2018)428--443]得到改进或扩展。

Let $κ'(G)$, $κ(G)$, $μ_{n-1}(G)$ and $μ_1(G)$ denote the edge-connectivity, vertex-connectivity, the algebraic connectivity and the Laplacian spectral radius of $G$, respectively. In this paper, we prove that for integers $k\geq 2$ and $r\geq 2$, and any simple graph $G$ of order $n$ with minimum degree $δ\geq k$, girth $g\geq 3$ and clique number $ω(G)\leq r$, the edge-connectivity $κ'(G)\geq k$ if $μ_{n-1}(G) \geq \frac{(k-1)n}{N(δ,g)(n-N(δ,g))}$ or if $μ_{n-1}(G) \geq \frac{(k-1)n}{φ(δ,r)(n-φ(δ,r))}$, where $N(δ,g)$ is the Moore bound on the smallest possible number of vertices such that there exists a $δ$-regular simple graph with girth $g$, and $φ(δ,r) = \max\{δ+1,\lfloor\frac{rδ}{r-1}\rfloor\}$. Analogue results involving $μ_{n-1}(G)$ and $\frac{μ_1(G)}{μ_{n-1}(G)}$ to characterize vertex-connectivity of graphs with fixed girth and clique number are also presented. Former results in [Linear Algebra Appl. 439 (2013) 3777--3784], [Linear Algebra Appl. 578 (2019) 411--424], [Linear Algebra Appl. 579 (2019) 72--88], [Appl. Math. Comput. 344-345 (2019) 141--149] and [Electronic J. Linear Algebra 34 (2018) 428--443] are improved or extended.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源