论文标题
学位 - $(n + 1)$多项式是最困难的$ c^{\,n + 1} $函数均匀地近似于学位 - $ n $ polyenmials
The degree-$(n+1)$ polynomials are the most difficult $C^{\,n + 1}$ functions to uniformly approximate with degree-$n$ polynomials
论文作者
论文摘要
在c^{\,n + 1}中的函数$ f \之间的误差与$ n $ $ n $的最佳多项式近似之间存在误差。我们表明,仅当$ f $是$ n + 1 $的多项式时,该错误才能达到这些界限。
There exist well-known tight bounds on the error between a function $f \in C^{\,n + 1}([-1, 1])$ and its best polynomial approximation of degree $n$. We show that the error meets these bounds when and only when $f$ is a polynomial of degree $n + 1$.